extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×Q8).1C22 = (C2×Q8).Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).1C2^2 | 128,126 |
(C22×Q8).2C22 = C23⋊Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).2C2^2 | 128,334 |
(C22×Q8).3C22 = C4⋊C4.6D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).3C2^2 | 128,335 |
(C22×Q8).4C22 = Q8⋊D4⋊C2 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).4C2^2 | 128,336 |
(C22×Q8).5C22 = (C2×C4)⋊Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).5C2^2 | 128,337 |
(C22×Q8).6C22 = C24.12D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).6C2^2 | 128,338 |
(C22×Q8).7C22 = 2- 1+4⋊2C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).7C2^2 | 128,525 |
(C22×Q8).8C22 = (C22×Q8)⋊C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).8C2^2 | 128,528 |
(C22×Q8).9C22 = (C2×Q8).211D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).9C2^2 | 128,562 |
(C22×Q8).10C22 = C4.10D4⋊2C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).10C2^2 | 128,589 |
(C22×Q8).11C22 = C24.160D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).11C2^2 | 128,604 |
(C22×Q8).12C22 = C24.73D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).12C2^2 | 128,605 |
(C22×Q8).13C22 = (C2×SD16)⋊14C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).13C2^2 | 128,609 |
(C22×Q8).14C22 = C8.C22⋊C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).14C2^2 | 128,614 |
(C22×Q8).15C22 = C24.23D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).15C2^2 | 128,617 |
(C22×Q8).16C22 = C4⋊Q8⋊15C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).16C2^2 | 128,618 |
(C22×Q8).17C22 = C4.4D4⋊13C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).17C2^2 | 128,620 |
(C22×Q8).18C22 = C24.135D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).18C2^2 | 128,624 |
(C22×Q8).19C22 = C24.75D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).19C2^2 | 128,626 |
(C22×Q8).20C22 = M4(2).45D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).20C2^2 | 128,633 |
(C22×Q8).21C22 = M4(2).46D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).21C2^2 | 128,634 |
(C22×Q8).22C22 = C42.6D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).22C2^2 | 128,637 |
(C22×Q8).23C22 = M4(2).49D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).23C2^2 | 128,640 |
(C22×Q8).24C22 = C4.(C4×D4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).24C2^2 | 128,641 |
(C22×Q8).25C22 = C42.7D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).25C2^2 | 128,644 |
(C22×Q8).26C22 = M4(2).50D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).26C2^2 | 128,647 |
(C22×Q8).27C22 = C4.68(C4×D4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).27C2^2 | 128,659 |
(C22×Q8).28C22 = C2.(C4×Q16) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).28C2^2 | 128,660 |
(C22×Q8).29C22 = C4.10D4⋊3C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).29C2^2 | 128,662 |
(C22×Q8).30C22 = C2.(C8⋊8D4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).30C2^2 | 128,665 |
(C22×Q8).31C22 = C2.(C8⋊D4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).31C2^2 | 128,667 |
(C22×Q8).32C22 = C42.431D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).32C2^2 | 128,688 |
(C22×Q8).33C22 = C42.433D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).33C2^2 | 128,690 |
(C22×Q8).34C22 = C42.110D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).34C2^2 | 128,691 |
(C22×Q8).35C22 = C42.111D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).35C2^2 | 128,692 |
(C22×Q8).36C22 = C42.114D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).36C2^2 | 128,698 |
(C22×Q8).37C22 = C42.115D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).37C2^2 | 128,699 |
(C22×Q8).38C22 = (C2×C4)⋊9SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).38C2^2 | 128,700 |
(C22×Q8).39C22 = (C2×C4)⋊6Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).39C2^2 | 128,701 |
(C22×Q8).40C22 = (C2×Q16)⋊10C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).40C2^2 | 128,703 |
(C22×Q8).41C22 = C8⋊(C22⋊C4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).41C2^2 | 128,705 |
(C22×Q8).42C22 = M4(2).31D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).42C2^2 | 128,709 |
(C22×Q8).43C22 = M4(2).33D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).43C2^2 | 128,711 |
(C22×Q8).44C22 = C42.117D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).44C2^2 | 128,713 |
(C22×Q8).45C22 = C42.119D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).45C2^2 | 128,715 |
(C22×Q8).46C22 = C23⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).46C2^2 | 128,732 |
(C22×Q8).47C22 = C23⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).47C2^2 | 128,733 |
(C22×Q8).48C22 = C42.129D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).48C2^2 | 128,735 |
(C22×Q8).49C22 = C42⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).49C2^2 | 128,736 |
(C22×Q8).50C22 = C42.130D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).50C2^2 | 128,737 |
(C22×Q8).51C22 = M4(2)⋊4D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).51C2^2 | 128,739 |
(C22×Q8).52C22 = M4(2).D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).52C2^2 | 128,741 |
(C22×Q8).53C22 = (C22×D8).C2 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).53C2^2 | 128,744 |
(C22×Q8).54C22 = (C2×C4)⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).54C2^2 | 128,745 |
(C22×Q8).55C22 = (C2×C8)⋊20D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).55C2^2 | 128,746 |
(C22×Q8).56C22 = (C2×C8).41D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).56C2^2 | 128,747 |
(C22×Q8).57C22 = (C2×C4)⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).57C2^2 | 128,748 |
(C22×Q8).58C22 = M4(2).5D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).58C2^2 | 128,751 |
(C22×Q8).59C22 = M4(2).6D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).59C2^2 | 128,752 |
(C22×Q8).60C22 = (C2×Q8)⋊Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).60C2^2 | 128,756 |
(C22×Q8).61C22 = C4⋊C4.85D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).61C2^2 | 128,758 |
(C22×Q8).62C22 = (C2×Q8)⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).62C2^2 | 128,760 |
(C22×Q8).63C22 = C24.85D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).63C2^2 | 128,767 |
(C22×Q8).64C22 = C24.86D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).64C2^2 | 128,768 |
(C22×Q8).65C22 = M4(2).7D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).65C2^2 | 128,770 |
(C22×Q8).66C22 = C4⋊C4.94D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).66C2^2 | 128,774 |
(C22×Q8).67C22 = C4⋊C4.95D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).67C2^2 | 128,775 |
(C22×Q8).68C22 = C4⋊C4.97D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).68C2^2 | 128,778 |
(C22×Q8).69C22 = C4⋊C4.98D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).69C2^2 | 128,779 |
(C22×Q8).70C22 = M4(2).9D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).70C2^2 | 128,781 |
(C22×Q8).71C22 = M4(2).11D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).71C2^2 | 128,784 |
(C22×Q8).72C22 = (C2×C4)⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).72C2^2 | 128,787 |
(C22×Q8).73C22 = (C2×C4)⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).73C2^2 | 128,788 |
(C22×Q8).74C22 = M4(2).13D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).74C2^2 | 128,796 |
(C22×Q8).75C22 = (C2×Q8).8Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).75C2^2 | 128,798 |
(C22×Q8).76C22 = (C2×C8).52D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).76C2^2 | 128,800 |
(C22×Q8).77C22 = M4(2).15D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).77C2^2 | 128,802 |
(C22×Q8).78C22 = (C2×C4).19Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).78C2^2 | 128,804 |
(C22×Q8).79C22 = (C2×Q8).109D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).79C2^2 | 128,806 |
(C22×Q8).80C22 = (C2×C8).6D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).80C2^2 | 128,814 |
(C22×Q8).81C22 = (C2×C8).60D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).81C2^2 | 128,827 |
(C22×Q8).82C22 = (C2×C8).170D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).82C2^2 | 128,828 |
(C22×Q8).83C22 = (C2×C8).171D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).83C2^2 | 128,829 |
(C22×Q8).84C22 = C2×C42.C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).84C2^2 | 128,862 |
(C22×Q8).85C22 = C2×C42.3C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).85C2^2 | 128,863 |
(C22×Q8).86C22 = C4⋊Q8.C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).86C2^2 | 128,865 |
(C22×Q8).87C22 = C23.211C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).87C2^2 | 128,1061 |
(C22×Q8).88C22 = C42⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).88C2^2 | 128,1063 |
(C22×Q8).89C22 = C23.214C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).89C2^2 | 128,1064 |
(C22×Q8).90C22 = C24.205C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).90C2^2 | 128,1069 |
(C22×Q8).91C22 = C23.250C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).91C2^2 | 128,1100 |
(C22×Q8).92C22 = C23.251C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).92C2^2 | 128,1101 |
(C22×Q8).93C22 = C24.221C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).93C2^2 | 128,1104 |
(C22×Q8).94C22 = C24.227C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).94C2^2 | 128,1110 |
(C22×Q8).95C22 = C23.261C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).95C2^2 | 128,1111 |
(C22×Q8).96C22 = C23.263C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).96C2^2 | 128,1113 |
(C22×Q8).97C22 = C23.315C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).97C2^2 | 128,1147 |
(C22×Q8).98C22 = C24.252C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).98C2^2 | 128,1149 |
(C22×Q8).99C22 = C23.327C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).99C2^2 | 128,1159 |
(C22×Q8).100C22 = C24.567C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).100C2^2 | 128,1170 |
(C22×Q8).101C22 = C24.267C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).101C2^2 | 128,1171 |
(C22×Q8).102C22 = C24.568C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).102C2^2 | 128,1172 |
(C22×Q8).103C22 = C23.346C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).103C2^2 | 128,1178 |
(C22×Q8).104C22 = C24.271C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).104C2^2 | 128,1179 |
(C22×Q8).105C22 = C23.349C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).105C2^2 | 128,1181 |
(C22×Q8).106C22 = C23.350C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).106C2^2 | 128,1182 |
(C22×Q8).107C22 = C23.352C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).107C2^2 | 128,1184 |
(C22×Q8).108C22 = C23.359C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).108C2^2 | 128,1191 |
(C22×Q8).109C22 = C24.282C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).109C2^2 | 128,1193 |
(C22×Q8).110C22 = C24.283C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).110C2^2 | 128,1195 |
(C22×Q8).111C22 = C24.285C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).111C2^2 | 128,1197 |
(C22×Q8).112C22 = C23.374C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).112C2^2 | 128,1206 |
(C22×Q8).113C22 = C23.377C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).113C2^2 | 128,1209 |
(C22×Q8).114C22 = C23.388C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).114C2^2 | 128,1220 |
(C22×Q8).115C22 = C24.301C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).115C2^2 | 128,1221 |
(C22×Q8).116C22 = C23.391C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).116C2^2 | 128,1223 |
(C22×Q8).117C22 = C23.392C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).117C2^2 | 128,1224 |
(C22×Q8).118C22 = C24.308C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).118C2^2 | 128,1231 |
(C22×Q8).119C22 = C23.402C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).119C2^2 | 128,1234 |
(C22×Q8).120C22 = C24.579C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).120C2^2 | 128,1235 |
(C22×Q8).121C22 = C23.411C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).121C2^2 | 128,1243 |
(C22×Q8).122C22 = C23.414C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).122C2^2 | 128,1246 |
(C22×Q8).123C22 = C23.420C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).123C2^2 | 128,1252 |
(C22×Q8).124C22 = C24.311C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).124C2^2 | 128,1253 |
(C22×Q8).125C22 = C24.313C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).125C2^2 | 128,1255 |
(C22×Q8).126C22 = C24.315C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).126C2^2 | 128,1259 |
(C22×Q8).127C22 = C23.432C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).127C2^2 | 128,1264 |
(C22×Q8).128C22 = C42⋊19D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).128C2^2 | 128,1272 |
(C22×Q8).129C22 = C42.167D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).129C2^2 | 128,1274 |
(C22×Q8).130C22 = C42⋊21D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).130C2^2 | 128,1276 |
(C22×Q8).131C22 = C42.170D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).131C2^2 | 128,1279 |
(C22×Q8).132C22 = C23.449C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).132C2^2 | 128,1281 |
(C22×Q8).133C22 = C42⋊6Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).133C2^2 | 128,1282 |
(C22×Q8).134C22 = C42⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).134C2^2 | 128,1283 |
(C22×Q8).135C22 = C23.455C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).135C2^2 | 128,1287 |
(C22×Q8).136C22 = C23.456C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).136C2^2 | 128,1288 |
(C22×Q8).137C22 = C23.457C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).137C2^2 | 128,1289 |
(C22×Q8).138C22 = C24.332C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).138C2^2 | 128,1292 |
(C22×Q8).139C22 = C42.173D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).139C2^2 | 128,1295 |
(C22×Q8).140C22 = C24.583C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).140C2^2 | 128,1296 |
(C22×Q8).141C22 = C23.472C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).141C2^2 | 128,1304 |
(C22×Q8).142C22 = C24.338C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).142C2^2 | 128,1306 |
(C22×Q8).143C22 = C23.483C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).143C2^2 | 128,1315 |
(C22×Q8).144C22 = C23.486C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).144C2^2 | 128,1318 |
(C22×Q8).145C22 = C23.488C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).145C2^2 | 128,1320 |
(C22×Q8).146C22 = C24.346C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).146C2^2 | 128,1321 |
(C22×Q8).147C22 = C42⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).147C2^2 | 128,1337 |
(C22×Q8).148C22 = C24.355C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).148C2^2 | 128,1339 |
(C22×Q8).149C22 = C42⋊26D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).149C2^2 | 128,1342 |
(C22×Q8).150C22 = C42⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).150C2^2 | 128,1344 |
(C22×Q8).151C22 = C42⋊28D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).151C2^2 | 128,1352 |
(C22×Q8).152C22 = C42.186D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).152C2^2 | 128,1353 |
(C22×Q8).153C22 = C23.525C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).153C2^2 | 128,1357 |
(C22×Q8).154C22 = C23.527C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).154C2^2 | 128,1359 |
(C22×Q8).155C22 = C42.187D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).155C2^2 | 128,1360 |
(C22×Q8).156C22 = C42⋊29D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).156C2^2 | 128,1363 |
(C22×Q8).157C22 = C24.374C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).157C2^2 | 128,1370 |
(C22×Q8).158C22 = C24.592C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).158C2^2 | 128,1371 |
(C22×Q8).159C22 = C42.193D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).159C2^2 | 128,1372 |
(C22×Q8).160C22 = C42.195D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).160C2^2 | 128,1374 |
(C22×Q8).161C22 = C23.545C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).161C2^2 | 128,1377 |
(C22×Q8).162C22 = C23.550C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).162C2^2 | 128,1382 |
(C22×Q8).163C22 = C23.553C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).163C2^2 | 128,1385 |
(C22×Q8).164C22 = C42⋊31D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).164C2^2 | 128,1389 |
(C22×Q8).165C22 = C42.196D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).165C2^2 | 128,1390 |
(C22×Q8).166C22 = C23.559C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).166C2^2 | 128,1391 |
(C22×Q8).167C22 = C42⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).167C2^2 | 128,1392 |
(C22×Q8).168C22 = C42⋊32D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).168C2^2 | 128,1394 |
(C22×Q8).169C22 = C24.378C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).169C2^2 | 128,1395 |
(C22×Q8).170C22 = C24.379C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).170C2^2 | 128,1397 |
(C22×Q8).171C22 = C42⋊11Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).171C2^2 | 128,1398 |
(C22×Q8).172C22 = C23.572C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).172C2^2 | 128,1404 |
(C22×Q8).173C22 = C23.574C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).173C2^2 | 128,1406 |
(C22×Q8).174C22 = C23.576C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).174C2^2 | 128,1408 |
(C22×Q8).175C22 = C24.385C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).175C2^2 | 128,1409 |
(C22×Q8).176C22 = C23.580C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).176C2^2 | 128,1412 |
(C22×Q8).177C22 = C23.581C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).177C2^2 | 128,1413 |
(C22×Q8).178C22 = C23.583C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).178C2^2 | 128,1415 |
(C22×Q8).179C22 = C24.393C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).179C2^2 | 128,1418 |
(C22×Q8).180C22 = C24.394C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).180C2^2 | 128,1419 |
(C22×Q8).181C22 = C23.589C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).181C2^2 | 128,1421 |
(C22×Q8).182C22 = C23.590C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).182C2^2 | 128,1422 |
(C22×Q8).183C22 = C23.592C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).183C2^2 | 128,1424 |
(C22×Q8).184C22 = C24.403C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).184C2^2 | 128,1428 |
(C22×Q8).185C22 = C24.405C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).185C2^2 | 128,1430 |
(C22×Q8).186C22 = C23.600C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).186C2^2 | 128,1432 |
(C22×Q8).187C22 = C23.602C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).187C2^2 | 128,1434 |
(C22×Q8).188C22 = C24.408C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).188C2^2 | 128,1436 |
(C22×Q8).189C22 = C24.412C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).189C2^2 | 128,1442 |
(C22×Q8).190C22 = C23.612C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).190C2^2 | 128,1444 |
(C22×Q8).191C22 = C23.613C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).191C2^2 | 128,1445 |
(C22×Q8).192C22 = C23.615C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).192C2^2 | 128,1447 |
(C22×Q8).193C22 = C23.616C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).193C2^2 | 128,1448 |
(C22×Q8).194C22 = C23.617C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).194C2^2 | 128,1449 |
(C22×Q8).195C22 = C23.620C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).195C2^2 | 128,1452 |
(C22×Q8).196C22 = C24.418C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).196C2^2 | 128,1455 |
(C22×Q8).197C22 = C24.420C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).197C2^2 | 128,1460 |
(C22×Q8).198C22 = C24.421C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).198C2^2 | 128,1461 |
(C22×Q8).199C22 = C23.630C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).199C2^2 | 128,1462 |
(C22×Q8).200C22 = C23.631C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).200C2^2 | 128,1463 |
(C22×Q8).201C22 = C23.632C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).201C2^2 | 128,1464 |
(C22×Q8).202C22 = C23.633C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).202C2^2 | 128,1465 |
(C22×Q8).203C22 = C23.634C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).203C2^2 | 128,1466 |
(C22×Q8).204C22 = C23.637C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).204C2^2 | 128,1469 |
(C22×Q8).205C22 = C24.428C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).205C2^2 | 128,1474 |
(C22×Q8).206C22 = C23.645C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).206C2^2 | 128,1477 |
(C22×Q8).207C22 = C23.651C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).207C2^2 | 128,1483 |
(C22×Q8).208C22 = C23.654C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).208C2^2 | 128,1486 |
(C22×Q8).209C22 = C23.655C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).209C2^2 | 128,1487 |
(C22×Q8).210C22 = C23.658C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).210C2^2 | 128,1490 |
(C22×Q8).211C22 = C23.659C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).211C2^2 | 128,1491 |
(C22×Q8).212C22 = C23.660C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).212C2^2 | 128,1492 |
(C22×Q8).213C22 = C23.662C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).213C2^2 | 128,1494 |
(C22×Q8).214C22 = C23.663C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).214C2^2 | 128,1495 |
(C22×Q8).215C22 = C23.664C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).215C2^2 | 128,1496 |
(C22×Q8).216C22 = C23.674C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).216C2^2 | 128,1506 |
(C22×Q8).217C22 = C23.675C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).217C2^2 | 128,1507 |
(C22×Q8).218C22 = C24.450C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).218C2^2 | 128,1516 |
(C22×Q8).219C22 = C23.685C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).219C2^2 | 128,1517 |
(C22×Q8).220C22 = C23.688C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).220C2^2 | 128,1520 |
(C22×Q8).221C22 = C23.689C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).221C2^2 | 128,1521 |
(C22×Q8).222C22 = C23.692C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).222C2^2 | 128,1524 |
(C22×Q8).223C22 = C23.698C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).223C2^2 | 128,1530 |
(C22×Q8).224C22 = C23.699C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).224C2^2 | 128,1531 |
(C22×Q8).225C22 = C24.456C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).225C2^2 | 128,1536 |
(C22×Q8).226C22 = C23.705C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).226C2^2 | 128,1537 |
(C22×Q8).227C22 = C23.706C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).227C2^2 | 128,1538 |
(C22×Q8).228C22 = C23.708C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).228C2^2 | 128,1540 |
(C22×Q8).229C22 = C23.709C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).229C2^2 | 128,1541 |
(C22×Q8).230C22 = C23.711C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).230C2^2 | 128,1543 |
(C22×Q8).231C22 = C23.714C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).231C2^2 | 128,1546 |
(C22×Q8).232C22 = C23.716C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).232C2^2 | 128,1548 |
(C22×Q8).233C22 = C24.462C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).233C2^2 | 128,1549 |
(C22×Q8).234C22 = C42⋊34D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).234C2^2 | 128,1551 |
(C22×Q8).235C22 = C42.199D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).235C2^2 | 128,1552 |
(C22×Q8).236C22 = C42.200D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).236C2^2 | 128,1553 |
(C22×Q8).237C22 = C23.724C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).237C2^2 | 128,1556 |
(C22×Q8).238C22 = C23.730C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).238C2^2 | 128,1562 |
(C22×Q8).239C22 = C23.731C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).239C2^2 | 128,1563 |
(C22×Q8).240C22 = C23.732C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).240C2^2 | 128,1564 |
(C22×Q8).241C22 = C23.733C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).241C2^2 | 128,1565 |
(C22×Q8).242C22 = C23.735C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).242C2^2 | 128,1567 |
(C22×Q8).243C22 = C23.738C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).243C2^2 | 128,1570 |
(C22×Q8).244C22 = C23.741C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).244C2^2 | 128,1573 |
(C22×Q8).245C22 = C42⋊12Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).245C2^2 | 128,1575 |
(C22×Q8).246C22 = C42⋊13Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).246C2^2 | 128,1576 |
(C22×Q8).247C22 = C42⋊46D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).247C2^2 | 128,1582 |
(C22×Q8).248C22 = C24.599C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).248C2^2 | 128,1587 |
(C22×Q8).249C22 = C42.440D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).249C2^2 | 128,1589 |
(C22×Q8).250C22 = C43⋊12C2 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).250C2^2 | 128,1590 |
(C22×Q8).251C22 = C43⋊14C2 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).251C2^2 | 128,1593 |
(C22×Q8).252C22 = C42⋊18Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).252C2^2 | 128,1594 |
(C22×Q8).253C22 = C42⋊15Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).253C2^2 | 128,1595 |
(C22×Q8).254C22 = C42⋊19Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).254C2^2 | 128,1600 |
(C22×Q8).255C22 = C23.4C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).255C2^2 | 128,1616 |
(C22×Q8).256C22 = M4(2).25C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).256C2^2 | 128,1621 |
(C22×Q8).257C22 = 2- 1+4⋊4C4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).257C2^2 | 128,1630 |
(C22×Q8).258C22 = C42.276C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).258C2^2 | 128,1679 |
(C22×Q8).259C22 = C42.278C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).259C2^2 | 128,1681 |
(C22×Q8).260C22 = C42.279C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).260C2^2 | 128,1682 |
(C22×Q8).261C22 = C2×D4.7D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).261C2^2 | 128,1733 |
(C22×Q8).262C22 = Q8.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).262C2^2 | 128,1743 |
(C22×Q8).263C22 = (C2×Q8)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).263C2^2 | 128,1745 |
(C22×Q8).264C22 = C2×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).264C2^2 | 128,1748 |
(C22×Q8).265C22 = C2×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).265C2^2 | 128,1749 |
(C22×Q8).266C22 = M4(2).C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).266C2^2 | 128,1752 |
(C22×Q8).267C22 = C2×D4.D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).267C2^2 | 128,1762 |
(C22×Q8).268C22 = C2×D4.2D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).268C2^2 | 128,1763 |
(C22×Q8).269C22 = C2×C4⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).269C2^2 | 128,1765 |
(C22×Q8).270C22 = C2×Q8.D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).270C2^2 | 128,1766 |
(C22×Q8).271C22 = C42.445D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).271C2^2 | 128,1771 |
(C22×Q8).272C22 = C42.446D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).272C2^2 | 128,1772 |
(C22×Q8).273C22 = C42.15C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).273C2^2 | 128,1774 |
(C22×Q8).274C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).274C2^2 | 128,1775 |
(C22×Q8).275C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).275C2^2 | 128,1776 |
(C22×Q8).276C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).276C2^2 | 128,1778 |
(C22×Q8).277C22 = C2×C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).277C2^2 | 128,1779 |
(C22×Q8).278C22 = C2×C8.18D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).278C2^2 | 128,1781 |
(C22×Q8).279C22 = C2×C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).279C2^2 | 128,1783 |
(C22×Q8).280C22 = C2×C8.D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).280C2^2 | 128,1785 |
(C22×Q8).281C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).281C2^2 | 128,1788 |
(C22×Q8).282C22 = (C2×C8)⋊11D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).282C2^2 | 128,1789 |
(C22×Q8).283C22 = C8.D4⋊C2 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).283C2^2 | 128,1791 |
(C22×Q8).284C22 = M4(2)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).284C2^2 | 128,1795 |
(C22×Q8).285C22 = C2×D4.3D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).285C2^2 | 128,1796 |
(C22×Q8).286C22 = C2×D4.5D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).286C2^2 | 128,1798 |
(C22×Q8).287C22 = M4(2).38D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | 8- | (C2^2xQ8).287C2^2 | 128,1801 |
(C22×Q8).288C22 = C42.21C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).288C2^2 | 128,1814 |
(C22×Q8).289C22 = C2×C23.47D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).289C2^2 | 128,1818 |
(C22×Q8).290C22 = C2×C23.20D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).290C2^2 | 128,1820 |
(C22×Q8).291C22 = C2×C23.48D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).291C2^2 | 128,1822 |
(C22×Q8).292C22 = C24.118D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).292C2^2 | 128,1827 |
(C22×Q8).293C22 = (C2×D4).302D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).293C2^2 | 128,1829 |
(C22×Q8).294C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).294C2^2 | 128,1853 |
(C22×Q8).295C22 = C42.360C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).295C2^2 | 128,1858 |
(C22×Q8).296C22 = C42.361C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).296C2^2 | 128,1859 |
(C22×Q8).297C22 = C2×C4.SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).297C2^2 | 128,1861 |
(C22×Q8).298C22 = C2×C42.78C22 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).298C2^2 | 128,1862 |
(C22×Q8).299C22 = C2×C42.28C22 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).299C2^2 | 128,1864 |
(C22×Q8).300C22 = C2×C42.30C22 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).300C2^2 | 128,1866 |
(C22×Q8).301C22 = C42.367C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).301C2^2 | 128,1869 |
(C22×Q8).302C22 = C42.241D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).302C2^2 | 128,1871 |
(C22×Q8).303C22 = C42.242D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).303C2^2 | 128,1872 |
(C22×Q8).304C22 = C2×C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).304C2^2 | 128,1875 |
(C22×Q8).305C22 = C2×C4⋊Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).305C2^2 | 128,1877 |
(C22×Q8).306C22 = C2×C8.12D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).306C2^2 | 128,1878 |
(C22×Q8).307C22 = C2×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).307C2^2 | 128,1880 |
(C22×Q8).308C22 = C2×C8.2D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).308C2^2 | 128,1881 |
(C22×Q8).309C22 = M4(2)⋊8D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).309C2^2 | 128,1884 |
(C22×Q8).310C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).310C2^2 | 128,1885 |
(C22×Q8).311C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).311C2^2 | 128,1886 |
(C22×Q8).312C22 = M4(2).20D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).312C2^2 | 128,1888 |
(C22×Q8).313C22 = C23⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).313C2^2 | 128,1921 |
(C22×Q8).314C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).314C2^2 | 128,1922 |
(C22×Q8).315C22 = C24.128D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).315C2^2 | 128,1927 |
(C22×Q8).316C22 = C24.129D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).316C2^2 | 128,1928 |
(C22×Q8).317C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).317C2^2 | 128,1933 |
(C22×Q8).318C22 = C4.172+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).318C2^2 | 128,1934 |
(C22×Q8).319C22 = C42.264D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).319C2^2 | 128,1938 |
(C22×Q8).320C22 = C42.267D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).320C2^2 | 128,1941 |
(C22×Q8).321C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).321C2^2 | 128,1943 |
(C22×Q8).322C22 = C42.271D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).322C2^2 | 128,1945 |
(C22×Q8).323C22 = C42.273D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).323C2^2 | 128,1947 |
(C22×Q8).324C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).324C2^2 | 128,1950 |
(C22×Q8).325C22 = C42.407C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).325C2^2 | 128,1953 |
(C22×Q8).326C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).326C2^2 | 128,1955 |
(C22×Q8).327C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).327C2^2 | 128,1957 |
(C22×Q8).328C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).328C2^2 | 128,2001 |
(C22×Q8).329C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).329C2^2 | 128,2002 |
(C22×Q8).330C22 = Q16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).330C2^2 | 128,2003 |
(C22×Q8).331C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).331C2^2 | 128,2008 |
(C22×Q8).332C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).332C2^2 | 128,2009 |
(C22×Q8).333C22 = Q16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).333C2^2 | 128,2010 |
(C22×Q8).334C22 = SD16⋊10D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).334C2^2 | 128,2014 |
(C22×Q8).335C22 = Q16⋊12D4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).335C2^2 | 128,2017 |
(C22×Q8).336C22 = D4×Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).336C2^2 | 128,2018 |
(C22×Q8).337C22 = D4⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).337C2^2 | 128,2030 |
(C22×Q8).338C22 = D4⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).338C2^2 | 128,2031 |
(C22×Q8).339C22 = C42.465C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).339C2^2 | 128,2032 |
(C22×Q8).340C22 = C42.466C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).340C2^2 | 128,2033 |
(C22×Q8).341C22 = C42.43C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).341C2^2 | 128,2040 |
(C22×Q8).342C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).342C2^2 | 128,2044 |
(C22×Q8).343C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).343C2^2 | 128,2045 |
(C22×Q8).344C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).344C2^2 | 128,2048 |
(C22×Q8).345C22 = C42.55C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).345C2^2 | 128,2052 |
(C22×Q8).346C22 = C42.56C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).346C2^2 | 128,2053 |
(C22×Q8).347C22 = C42.475C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).347C2^2 | 128,2058 |
(C22×Q8).348C22 = C42.476C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).348C2^2 | 128,2059 |
(C22×Q8).349C22 = C42.477C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).349C2^2 | 128,2060 |
(C22×Q8).350C22 = C42.478C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).350C2^2 | 128,2061 |
(C22×Q8).351C22 = C2×C22.33C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).351C2^2 | 128,2183 |
(C22×Q8).352C22 = C2×C22.36C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).352C2^2 | 128,2186 |
(C22×Q8).353C22 = C2×C23.41C23 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).353C2^2 | 128,2189 |
(C22×Q8).354C22 = C2×D4⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).354C2^2 | 128,2204 |
(C22×Q8).355C22 = C2×C22.49C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).355C2^2 | 128,2205 |
(C22×Q8).356C22 = C2×Q82 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).356C2^2 | 128,2209 |
(C22×Q8).357C22 = C22.84C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).357C2^2 | 128,2227 |
(C22×Q8).358C22 = C4⋊2- 1+4 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).358C2^2 | 128,2229 |
(C22×Q8).359C22 = C22.88C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).359C2^2 | 128,2231 |
(C22×Q8).360C22 = C22.92C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).360C2^2 | 128,2235 |
(C22×Q8).361C22 = C22.98C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).361C2^2 | 128,2241 |
(C22×Q8).362C22 = C22.99C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).362C2^2 | 128,2242 |
(C22×Q8).363C22 = C22.100C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).363C2^2 | 128,2243 |
(C22×Q8).364C22 = C22.107C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).364C2^2 | 128,2250 |
(C22×Q8).365C22 = C23.146C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).365C2^2 | 128,2255 |
(C22×Q8).366C22 = C22.113C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).366C2^2 | 128,2256 |
(C22×Q8).367C22 = C2×C22.56C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).367C2^2 | 128,2259 |
(C22×Q8).368C22 = C2×C22.57C24 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).368C2^2 | 128,2260 |
(C22×Q8).369C22 = C22.133C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).369C2^2 | 128,2276 |
(C22×Q8).370C22 = C22.136C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).370C2^2 | 128,2279 |
(C22×Q8).371C22 = C22.139C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).371C2^2 | 128,2282 |
(C22×Q8).372C22 = C22.141C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).372C2^2 | 128,2284 |
(C22×Q8).373C22 = C22.143C25 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).373C2^2 | 128,2286 |
(C22×Q8).374C22 = C2×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).374C2^2 | 128,2315 |
(C22×Q8).375C22 = C4×C4.10D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).375C2^2 | 128,488 |
(C22×Q8).376C22 = C4×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).376C2^2 | 128,493 |
(C22×Q8).377C22 = Q8⋊C42 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).377C2^2 | 128,495 |
(C22×Q8).378C22 = C4.C22≀C2 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).378C2^2 | 128,516 |
(C22×Q8).379C22 = (C23×C4).C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).379C2^2 | 128,517 |
(C22×Q8).380C22 = C24.155D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).380C2^2 | 128,519 |
(C22×Q8).381C22 = C24.65D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).381C2^2 | 128,520 |
(C22×Q8).382C22 = C42.97D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).382C2^2 | 128,533 |
(C22×Q8).383C22 = C42.99D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).383C2^2 | 128,535 |
(C22×Q8).384C22 = C42.101D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).384C2^2 | 128,537 |
(C22×Q8).385C22 = Q8⋊(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).385C2^2 | 128,595 |
(C22×Q8).386C22 = Q8⋊C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).386C2^2 | 128,597 |
(C22×Q8).387C22 = (C2×C4)⋊9Q16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).387C2^2 | 128,610 |
(C22×Q8).388C22 = (C2×SD16)⋊15C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).388C2^2 | 128,612 |
(C22×Q8).389C22 = C2×C23.67C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).389C2^2 | 128,1026 |
(C22×Q8).390C22 = C42⋊14Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).390C2^2 | 128,1027 |
(C22×Q8).391C22 = C23.179C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).391C2^2 | 128,1029 |
(C22×Q8).392C22 = C4×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).392C2^2 | 128,1034 |
(C22×Q8).393C22 = C4×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).393C2^2 | 128,1035 |
(C22×Q8).394C22 = C4×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).394C2^2 | 128,1039 |
(C22×Q8).395C22 = C23.192C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).395C2^2 | 128,1042 |
(C22×Q8).396C22 = C24.542C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).396C2^2 | 128,1043 |
(C22×Q8).397C22 = C23.202C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).397C2^2 | 128,1052 |
(C22×Q8).398C22 = C42.159D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).398C2^2 | 128,1055 |
(C22×Q8).399C22 = C42.160D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).399C2^2 | 128,1058 |
(C22×Q8).400C22 = C42.161D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).400C2^2 | 128,1059 |
(C22×Q8).401C22 = C24.549C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).401C2^2 | 128,1071 |
(C22×Q8).402C22 = C23.237C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).402C2^2 | 128,1087 |
(C22×Q8).403C22 = C23.238C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).403C2^2 | 128,1088 |
(C22×Q8).404C22 = C24.558C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).404C2^2 | 128,1092 |
(C22×Q8).405C22 = C23.244C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).405C2^2 | 128,1094 |
(C22×Q8).406C22 = C23.247C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).406C2^2 | 128,1097 |
(C22×Q8).407C22 = C24.220C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).407C2^2 | 128,1099 |
(C22×Q8).408C22 = C2×C23.78C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).408C2^2 | 128,1119 |
(C22×Q8).409C22 = C23.288C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).409C2^2 | 128,1120 |
(C22×Q8).410C22 = C42.162D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).410C2^2 | 128,1128 |
(C22×Q8).411C22 = C42.163D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).411C2^2 | 128,1130 |
(C22×Q8).412C22 = C42⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).412C2^2 | 128,1131 |
(C22×Q8).413C22 = C24.243C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).413C2^2 | 128,1138 |
(C22×Q8).414C22 = C24.244C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).414C2^2 | 128,1139 |
(C22×Q8).415C22 = C23.309C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).415C2^2 | 128,1141 |
(C22×Q8).416C22 = C23.321C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).416C2^2 | 128,1153 |
(C22×Q8).417C22 = C23.323C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).417C2^2 | 128,1155 |
(C22×Q8).418C22 = C24.259C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).418C2^2 | 128,1158 |
(C22×Q8).419C22 = C23.329C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).419C2^2 | 128,1161 |
(C22×Q8).420C22 = C24.262C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).420C2^2 | 128,1162 |
(C22×Q8).421C22 = C24.263C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).421C2^2 | 128,1163 |
(C22×Q8).422C22 = C24.264C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).422C2^2 | 128,1164 |
(C22×Q8).423C22 = C23.334C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).423C2^2 | 128,1166 |
(C22×Q8).424C22 = C24.565C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).424C2^2 | 128,1168 |
(C22×Q8).425C22 = C23.348C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).425C2^2 | 128,1180 |
(C22×Q8).426C22 = C23.351C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).426C2^2 | 128,1183 |
(C22×Q8).427C22 = C23.353C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).427C2^2 | 128,1185 |
(C22×Q8).428C22 = C24.279C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).428C2^2 | 128,1190 |
(C22×Q8).429C22 = C23.362C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).429C2^2 | 128,1194 |
(C22×Q8).430C22 = C23.369C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).430C2^2 | 128,1201 |
(C22×Q8).431C22 = C42.165D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).431C2^2 | 128,1268 |
(C22×Q8).432C22 = C42.166D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).432C2^2 | 128,1270 |
(C22×Q8).433C22 = C42.168D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).433C2^2 | 128,1277 |
(C22×Q8).434C22 = C42.169D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).434C2^2 | 128,1278 |
(C22×Q8).435C22 = C42.171D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).435C2^2 | 128,1280 |
(C22×Q8).436C22 = C42.174D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).436C2^2 | 128,1297 |
(C22×Q8).437C22 = C42.176D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).437C2^2 | 128,1299 |
(C22×Q8).438C22 = C42.177D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).438C2^2 | 128,1300 |
(C22×Q8).439C22 = C42.178D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).439C2^2 | 128,1312 |
(C22×Q8).440C22 = C42.179D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).440C2^2 | 128,1313 |
(C22×Q8).441C22 = C42.180D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).441C2^2 | 128,1314 |
(C22×Q8).442C22 = C42.181D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).442C2^2 | 128,1316 |
(C22×Q8).443C22 = C42.182D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).443C2^2 | 128,1324 |
(C22×Q8).444C22 = C42.183D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).444C2^2 | 128,1331 |
(C22×Q8).445C22 = C42.184D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).445C2^2 | 128,1336 |
(C22×Q8).446C22 = C23.514C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).446C2^2 | 128,1346 |
(C22×Q8).447C22 = C24.360C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).447C2^2 | 128,1347 |
(C22×Q8).448C22 = C24.361C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).448C2^2 | 128,1348 |
(C22×Q8).449C22 = C42.189D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).449C2^2 | 128,1364 |
(C22×Q8).450C22 = C42.191D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).450C2^2 | 128,1366 |
(C22×Q8).451C22 = C42.192D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).451C2^2 | 128,1369 |
(C22×Q8).452C22 = C22×C4.10D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).452C2^2 | 128,1618 |
(C22×Q8).453C22 = C2×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).453C2^2 | 128,1619 |
(C22×Q8).454C22 = C22×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).454C2^2 | 128,1623 |
(C22×Q8).455C22 = C2×C23.24D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).455C2^2 | 128,1624 |
(C22×Q8).456C22 = C2×C23.38D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).456C2^2 | 128,1626 |
(C22×Q8).457C22 = C2×C23.36D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).457C2^2 | 128,1627 |
(C22×Q8).458C22 = C24.98D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).458C2^2 | 128,1628 |
(C22×Q8).459C22 = C2×C4×SD16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).459C2^2 | 128,1669 |
(C22×Q8).460C22 = C2×C4×Q16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).460C2^2 | 128,1670 |
(C22×Q8).461C22 = C2×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).461C2^2 | 128,1672 |
(C22×Q8).462C22 = C2×Q16⋊C4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).462C2^2 | 128,1673 |
(C22×Q8).463C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).463C2^2 | 128,1677 |
(C22×Q8).464C22 = C2×C22⋊Q16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).464C2^2 | 128,1731 |
(C22×Q8).465C22 = C2×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).465C2^2 | 128,1732 |
(C22×Q8).466C22 = C24.103D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).466C2^2 | 128,1734 |
(C22×Q8).467C22 = C24.178D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).467C2^2 | 128,1736 |
(C22×Q8).468C22 = C24.104D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).468C2^2 | 128,1737 |
(C22×Q8).469C22 = C2×C4⋊SD16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).469C2^2 | 128,1764 |
(C22×Q8).470C22 = C42.212D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).470C2^2 | 128,1769 |
(C22×Q8).471C22 = C2×Q8⋊Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).471C2^2 | 128,1805 |
(C22×Q8).472C22 = C2×C4.Q16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).472C2^2 | 128,1806 |
(C22×Q8).473C22 = C2×Q8.Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).473C2^2 | 128,1807 |
(C22×Q8).474C22 = C42.220D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).474C2^2 | 128,1810 |
(C22×Q8).475C22 = C42.223D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).475C2^2 | 128,1835 |
(C22×Q8).476C22 = C42.224D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).476C2^2 | 128,1836 |
(C22×Q8).477C22 = C42.226D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).477C2^2 | 128,1840 |
(C22×Q8).478C22 = C42.230D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).478C2^2 | 128,1844 |
(C22×Q8).479C22 = C42.231D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).479C2^2 | 128,1845 |
(C22×Q8).480C22 = C42.235D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).480C2^2 | 128,1849 |
(C22×Q8).481C22 = C2×C23.32C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).481C2^2 | 128,2158 |
(C22×Q8).482C22 = C22.14C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 32 | | (C2^2xQ8).482C2^2 | 128,2160 |
(C22×Q8).483C22 = C4×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).483C2^2 | 128,2162 |
(C22×Q8).484C22 = C2×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).484C2^2 | 128,2171 |
(C22×Q8).485C22 = C22×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).485C2^2 | 128,2173 |
(C22×Q8).486C22 = C2×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).486C2^2 | 128,2174 |
(C22×Q8).487C22 = C2×C23.37C23 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).487C2^2 | 128,2175 |
(C22×Q8).488C22 = C2×C22.31C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).488C2^2 | 128,2180 |
(C22×Q8).489C22 = C2×C22.35C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).489C2^2 | 128,2185 |
(C22×Q8).490C22 = C22.50C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).490C2^2 | 128,2193 |
(C22×Q8).491C22 = C2×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).491C2^2 | 128,2196 |
(C22×Q8).492C22 = C2×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).492C2^2 | 128,2202 |
(C22×Q8).493C22 = C2×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).493C2^2 | 128,2206 |
(C22×Q8).494C22 = C2×Q8⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).494C2^2 | 128,2208 |
(C22×Q8).495C22 = Q8×C4○D4 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).495C2^2 | 128,2210 |
(C22×Q8).496C22 = C2×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).496C2^2 | 128,2211 |
(C22×Q8).497C22 = C22.69C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).497C2^2 | 128,2212 |
(C22×Q8).498C22 = C22.71C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).498C2^2 | 128,2214 |
(C22×Q8).499C22 = C22.91C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).499C2^2 | 128,2234 |
(C22×Q8).500C22 = C22.96C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).500C2^2 | 128,2239 |
(C22×Q8).501C22 = C22.105C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).501C2^2 | 128,2248 |
(C22×Q8).502C22 = C22.111C25 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).502C2^2 | 128,2254 |
(C22×Q8).503C22 = C23×Q16 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 128 | | (C2^2xQ8).503C2^2 | 128,2308 |
(C22×Q8).504C22 = C22×C4○D8 | φ: C22/C2 → C2 ⊆ Out C22×Q8 | 64 | | (C2^2xQ8).504C2^2 | 128,2309 |
(C22×Q8).505C22 = Q8×C42 | φ: trivial image | 128 | | (C2^2xQ8).505C2^2 | 128,1004 |
(C22×Q8).506C22 = Q8⋊4C42 | φ: trivial image | 128 | | (C2^2xQ8).506C2^2 | 128,1008 |
(C22×Q8).507C22 = Q8×C22⋊C4 | φ: trivial image | 64 | | (C2^2xQ8).507C2^2 | 128,1072 |
(C22×Q8).508C22 = C23.223C24 | φ: trivial image | 64 | | (C2^2xQ8).508C2^2 | 128,1073 |
(C22×Q8).509C22 = Q8×C4⋊C4 | φ: trivial image | 128 | | (C2^2xQ8).509C2^2 | 128,1082 |
(C22×Q8).510C22 = C23.233C24 | φ: trivial image | 128 | | (C2^2xQ8).510C2^2 | 128,1083 |
(C22×Q8).511C22 = Q8×C22×C4 | φ: trivial image | 128 | | (C2^2xQ8).511C2^2 | 128,2155 |
(C22×Q8).512C22 = C2×C4×C4○D4 | φ: trivial image | 64 | | (C2^2xQ8).512C2^2 | 128,2156 |
(C22×Q8).513C22 = C2×C23.33C23 | φ: trivial image | 64 | | (C2^2xQ8).513C2^2 | 128,2159 |
(C22×Q8).514C22 = C2×Q8⋊6D4 | φ: trivial image | 64 | | (C2^2xQ8).514C2^2 | 128,2199 |